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1. Introduction

A goal of dynamical systems theory is to predict certain aspects of the future behaviour of some
evolving systems from its present state. Particularly interesting is determining the possible
different final states of a given dynamical system for certain initial conditions.
An ambitious objective is to find, as a parameter is varied, the extension of the intervals where a

periodic solution of a given period appears.
A widely used method for finding periodic orbits is Newton’s method and variants thereof.

There are various programs whose routines are based on this method, for example Ref. [1]. These
procedures can be used to locate periodic points of specified period on the time –2P map of the
examined dynamical system and to follow the evolution of the periodic orbit by varying a
parameter in a range fixed by the user, but they do not give direct information about the interval
where periodic orbits exist. As a first attempt to solve this problem, the possibility of a neural
networks approach is discussed here.
Artificial neural networks, by offering a completely different approach to problem-solving,

have been successfully applied in solving a wide variety of problems, where other methods failed.
There are various application areas, for example classification, pattern recognition, function
approximation, control, filtering. For an exhaustive exposition of all the related arguments one
can see Ref. [2]. The literature offers several applications of neural networks in engineering and
applied mechanics fields, but there is no example referring to the problem examined here [3–6]. In
fact, chaos control and system identification problems have a different nature [7–9].
In this paper, a feedforward network trained with the back-propagation algorithm has been

used. This structure is by far the most popular.
In designing the network, a particular activation function with a redefined shape has been

adopted.
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The parameters of a one-degree-of-freedom Duffing oscillator have been fixed, with exception
of the forcing term frequency, and the results of numerical simulations for different values
(choosen in a limited range) of the forcing term amplitude are used to train the network.
Even if the response of the Duffing oscillator is quite rich, including subharmonic motions and

non-periodic behaviours [10], in order to test the potentialities of a neural network approach,
attention has been dedicated to period 3 orbits only, which are usually the most important
windows.
By means of the designed network, the prediction of the frequency variation intervals, where

the period 3 orbit exists, is satisfactory, provided the input values are within the range used in the
training set.

2. Artificial neural networks: an overview

Artificial neural networks are electronic models based on the neural structure of the brain which
basically learns from experience. Obviously, the biological brain neurons are complicated and the
artificial models try to replicate only their basic elements. A multilayer neural network has an
input layer, an output layer and at least one hidden layer. Each layer is composed of some units
called neurons or perceptrons, which has led to the name multilayer perceptron network being
used. Synapses, the junction between biological neurons, are called connections in the artificial
model. If each layer is connected only to the previous layer the system is called feedforward. The
units in the input layer serve to distribute the values they receive to the next layer. To each
connection a multiplicative (positive or negative) factor is associated that modifies the incoming
signal. This factor is called weight or connection strength: it assigns a different importance to the
signals transferred through connections from one layer to the next. Each processing element
performs a weighted sum of its input; this sum is called net input. For the ith unit, the net input
for a pattern p (i.e. the pth example presented to the network) is

vpi ¼
Xn

j¼1

ypjwij;

where n is the number of units having connections to the ith unit, ypj is the output of the jth unit
and wij is the weight of the connection from the jth unit to the ith unit. In this sum can be included
the bias term, which can be regarded as a weight on a connection that has its input value always
equal to one.
The net input constitutes the argument of a transfer function, also called activation function,

which generates a result. In order to obtain the desired output, this result can be scaled and added
to an offset. The scaling operation can be seen as a change in shape and location of the transfer
function. A particularly useful transfer function is the sigmoidal function:

f ðxÞ ¼
1

1þ e�x

taking values in the range between zero and one.
In order to obtain the desired output, one needs to find a proper set of weights. The learning

rule provides the method for adjusting the weights in the network.
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The best known learning rule for multilayer perceptrons is called the generalized delta rule or
the back-propagation rule. The back-propagation algorithm uses a gradient descent search
method for minimizing an error defined as the mean-square difference between the desired output
dpk and the actual output ypk

E ¼
XP

p¼1

Ep ¼
1

2

XP

p¼1

XM
k¼1

ðdpk � ypkÞ
2;

where M is the number of output layer nodes. Ep represents a local approximation to the global
error surface E: To initiate training one assigns random values to weights. Operating with a
pattern mode, as a training pattern is presented to the network, one calculates differences between
the actual outputs and the desired outputs and brings those errors back to the hidden layer(s) to
calculate the surface gradient there. Then connection weights are adjusted in proportion to the
error (i.e., in the direction of the negative of the gradient) by a scaling factor which is called the
learning rate whose value is less than unity. So the next input pattern is presented to the network
and the weight-update process is repeated. The process continues until all the output layer errors
have been reduced to an acceptable value.
The weight changes for a layer, being proportional to the gradient of Ep with respect to the

weights for that layer, are written as

Dpwkj ¼ �Z
@Ep

@wkj

¼ Zdpkypj;

where obviously ypj ¼ fjðvpjÞ; Z is the learning rate parameter and

dpk ¼ f 0
kðvpkÞðdpk � ypkÞ

for output layer units or

dpk ¼ f 0
kðvpkÞ

XM
i¼1

dpiwik

for hidden layer units.
So, the new weights are

wkjðt þ 1Þ ¼ wkjðtÞ þ Dpwkjðt þ 1Þ:

A modification of this algorithm is obtained by introducing a momentum term into the weight
adaptation equation. This equation is modified so that a portion of the previous weight change
influences the current weight adjustment. This allows a low learning coefficient to be used and
creates faster learning.
The new weights are calculated as follows:

wkjðt þ 1Þ ¼ wkjðtÞ þ Zdpkypj þ aDpwkjðtÞ;

where 0oao1 is the momentum factor and DpwkjðtÞ ¼ wkjðtÞ � wkjðt � 1Þ:
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3. The Duffing model

Duffing’s equation identifies a group of classical non-linear initial-value differential equations

.x þ c ’x � b1x þ b2x
3 ¼ F sinot; ð1Þ

where c is the damping parameter, b1 and b2 are the linear and non-linear stiffness parameters
respectively. The solution xðtÞ gives the variation of displacement in time t:
It is not difficult to verify [11] that this equation is the same which can be retrieved using a first

approximation discretization, by means of the Galerkin method, a simple structural model such as
a simply supported beam with an applied axial load, provided that the beam is considered to be so
slender that the shortening of the beam axis cannot be neglected.
In fact, considering such a beam with span L; Young’s modulus E; moment of inertia I ; mass

per unit length m; cross-sectional area A; which is subjected to a compressive load P and to an
exciting transverse force %fðz; tÞ ¼ %fðzÞ sin %ot; the equation of motion can be written as

m
@2u

@t2
þ EI

@4u

@z4
þ P

@2u

@z2
�

EA

2L

Z L

0

@u

@z

� �2

dz

 !
@2u

@z2
¼ %fðzÞ sin %ot: ð2Þ

This equation in terms of dimensionless variables becomes

@2v

@t2
þ

@4v

@z4
þ s

@2v

@z2
� k

Z 1

0

@v

@z

� �2

dz

 !
@2v

@z2
¼ F ðzÞ sinot; ð3Þ

where

v ¼
u

L
; z ¼

z

L
; t ¼

ffiffiffiffiffiffi
EI

m

r
t

L2
; s ¼

PL2

EI

k ¼
AL2

2I
; o ¼

ffiffiffiffiffiffi
m

EI

r
L2

%o; F ðzÞ ¼
%fðzÞL3

EI
:

By writing the solution in first approximation as follows:

vðt; zÞ ¼ xðtÞ sin pz

and continuing as usual in the Galerkin method, Eq. (1) is obtained.
It is observed that the negative sign of the linear stiffness parameter b1 indicates that for

positive values the axial load is greater than the critical load. So the beam can oscillate around
different equilibrium points alternatively and not just around the only equilibrium point existing
for the sub-critical case b1o0:

4. Training and testing of the neural network

A neural network may be considered as a non-linear input–output mapping. If the network
produces a correct (or nearly so) input–output mapping even when the input is slightly different
from the examples used to train the network, the network is said to generalize well.
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The number of input–output pair examples in the training set is important to reach a good
generalization: too many input–output examples cause a phenomenon known as overtraining.
When the network is overtrained, it looses the ability to generalize between similar input–output
patterns.
In preparing the data set (training and testing data) for the examined problem, the attention has

been restricted to values corresponding to an amplitude of the forcing term between 3 and 9. In
this range, bifurcation diagrams reveal two intervals relative to period 3 orbits. So, the number of
output nodes is fixed at four: the minimum and the maximum frequency of the first interval are
here indicated as output 1 and output 2 respectively, whereas the analogous values referring to the
second interval are indicated as output 3 and output 4 respectively.
In addition, one hidden layer with six nodes has been considered.
The problem parameters have been fixed as follows:

b1 ¼ b2 ¼ 1; c ¼ 0:3:

Because the range of variation of the input parameter (i.e., the amplitude of the forcing term) is
quite small, a reduced data set is sufficient to obtain a network with good predictive capabilities,
provided that it is well designed.
To reproduce the observed data, a non-symmetric activation function (output between 0 and a

certain value a) has been chosen as the hyperbolic tangent:

f ðvÞ ¼ a tanhðbvÞ:

The assumption a ¼ 1:6 is necessary to contain the target values (desired output) into the range of
the sigmoid function. Besides, by desiring to have at the origin, the slope of the activation function
close to the unity, b ¼ 0:6 remains fixed.
In order to increase the speed of convergence, Z ¼ 0:2 and a ¼ 0:9 have been fixed.
Figs. 1–4 show the good generalization of the designed network. The curves depicted in these

figures represent the non-linear input–output mapping computed by the network as a result of
learning the points labelled training data. In particular, Figs. 1 and 3 refer to the minimum
frequency value for a single interval, whereas Figs. 2 and 4 refer to the maximum value. Fig. 5
gives information about the errors between desired and actual outputs.
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5. Conclusions

This paper represents a first exploration of the possibility of using the neural networks tool for
detecting the intervals where a periodic solution of assigned period exists.
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Fig. 2. The maximum frequency in the first interval: % training data, } testing data.

Fig. 3. The minimum frequency in the second interval: % training data, } testing data.

Fig. 4. The maximum frequency in the second interval: % training data, } testing data.
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A feedforward network trained with the back-propagation algorithm has been used. The type,
shape and location of the activation function have been chosen with care to produce the desired
output by avoiding problems such as saturation of some nodes. Numerical results show the good
performance of the network, encouraging further development in order to enlarge the range of
analysis.
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Fig. 5. Error distribution of the frequency.
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